Advances in Polynomial Continuation for Solving Problems in Kinematics
نویسندگان
چکیده
منابع مشابه
Advances in Polynomial Continuation for Solving Problems in Kinematics
For many mechanical systems, including nearly all robotic manipulators, the set of possible configurations that the links may assume can be described by a system of polynomial equations. Thus, solving such systems is central to many problems in analyzing the motion of a mechanism or in designing a mechanism to achieve a desired motion. This paper describes techniques, based on polynomial contin...
متن کاملSolving Polynomial Systems in the Cloud with Polynomial Homotopy Continuation
Polynomial systems occur in many fields of science and engineering. Polynomial homotopy continuation methods apply symbolic-numeric algorithms to solve polynomial systems. We describe the design and implementation of our web interface and reflect on the application of polynomial homotopy continuation methods to solve polynomial systems in the cloud. Via the graph isomorphism problem we organize...
متن کاملNon-Interior continuation methods for solving semidefinite complementarity problems
There recently has been much interest in non-interior continuation/smoothing methods for solving linear/nonlinear complementarity problems. We describe extensions of such methods to complementarity problems defined over the cone of block-diagonal symmetric positive semidefinite real matrices. These extensions involve the Chen-Mangasarian class of smoothing functions and the smoothed Fischer-Bur...
متن کاملSolving polynomial systems via homotopy continuation and monodromy
We develop an algorithm to find all solutions of a generic system in a family of polynomial systems with parametric coefficients using numerical homotopy continuation and the action of the monodromy group. We argue that the expected number of homotopy paths that this algorithm needs to follow is roughly linear in the number of solutions. We demonstrate that our software implementation is compet...
متن کاملSolving polynomial equations for minimal problems in computer vision
Epipolar geometry and relative camera pose computation are examples of tasks which can be formulated as minimal problems, i.e. they can be solved from a minimal number of image points. Finding the solution leads to solving systems of algebraic equations. Often, these systems are not trivial and therefore special algorithms have to be designed to achieve numerical robustness and computational ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mechanical Design
سال: 2004
ISSN: 1050-0472
DOI: 10.1115/1.1649965